Proven Ways to Reduce Manufacturing and Production Costs

Kris Carter, Total Joint Orthopedics

Steve Rozow, Mach Medical

Sponsored by

Lincotek Medical

O[®] M T E C[®]

Proven Ways to Reduce Manufacturing and Production Costs

Steve Rozow General Manager, Co-Founder Mach Medical

Major Challenges

Profit Margin Squeeze

- Lower reimbursement rates in outpatient settings and limited differentiation among implants contribute to pricing pressures.
- Adoption of high-performance materials increases implant costs, further squeezing profit margins.

High Inventory Burden

2

- Traditional supply chain model requires ~12-month inventory levels, costing 8% of sales annually
- Driven by long lead times and Minimum Order Quantities
- Slows new product introductions as launch inventory builds are large

Slow Time to Market

- R&D teams are at a standing start, many items to de-risk (technical, regulatory, market)
- Manufacturing Engineering Transfer is labor intensive process
- Casting and forging tool design processes are lengthy

2 The Inventory Problem

Inventory composition should be proportional to revenue, but it isn't for a variety of reasons.

Inventory Proportions

Drivers of Unproductive Inventory

- Large economic order sizes in manufacturing
- Long manufacturing lead times
- Product delivery configuration OR inventory sets

- Outlier sizes
- Difficulty forecasting low volume SKUs

The annual cost of inventory for an orthopedic OEM is >8% of sales (based on Cost of Money for inventory holdings, Excess & Obsolescence expense, Shipping & Handling expense).

2 1 High Velocity Manufacturing

We are addressing the inventory problem through our High Velocity Manufacturing approach, whereby we build the highest quality implants in as few as 3 weeks, in lot sizes as low as one, in a highly economical way. We only build what is necessary to satisfy demand, thereby decreasing inventories.

Inventory Case Study

Key inventory model inputs:

- ➢ 5-year forecast from OEM
- ➢ Cost of capital 12%
- ➢ Excess and obsolete expense 2.5%
- ➤ Shipping and handling expense 2.5%
- > Three manufacturing scenarios:
 - 1. Traditional batch manufacturing: TKR 4-month lead time, MOQ 15
 - 2. High Velocity Manufacturing (HVM): Set deployment is the same as traditional manufacturing; 4-week lead times and MOQ of 1
 - 3. Make-to-Surgical Plan (MtSP): Set deployment is much less than traditional manufacturing or HVM as only the product needed for surgery is manufactured, plus some safety stock; 4-week lead times and MOQ of 1

Key inventory model outputs:

Traditional Manufacturing

High Velocity Manufacturing

36% overall inventory reduction

77% WH inventory reduction

HVM (5 Yr)	Fe	emur + Tib	Femur	Tibia
Unit Avoidance		2,899	1,623	1,276
Inventory Avoidance	\$	1,149,091	\$ 761,187	\$ 387,904
Carrying Cost Avoidance	\$	670,608	\$ 515,619	\$ 154,989
Cost Avoided per Unit	\$	78	\$ 103	\$ 49
NPV (12%)	\$	1,624,731	\$ 1,140,005	\$ 484,726

Make-to-Surgical Plan Manufacturing

81% overall inventory reduction 85% WH inventory reduction

MtSP (5 Yr)	Femur + Tib	Femur	Tibia
Unit Avoidance	8,154	5,665	2,489
Inventory Avoidance	\$ 3,413,541	\$ 2,656,885	\$ 756,656
Carrying Cost Avoidance	\$ 2,232,617	\$ 1,700,106	\$ 532,511
Cost Avoided per Unit	\$ 276	\$ 410	\$ 131
NPV (12%)	\$ 5,041,212	\$ 3,890,171	\$ 1,151,042

High Performance Implant Solutions Delivered Faster

Faster Manufacturing Transfer

Faster Design

1 3

OsteoSync Ti

- Advanced characteristics
- Proven performance
- Proven attachment
 - Broad application • Enable rapid
- FDA Masterfile

Universal Castings & Forgings

- Off-the-shelf
- availability Multiple OEMs
- Multiple Sizes
- prototyping
 - during design Accommodate design changes

Targeted Castings Digital Twin & Forgings

- Short lead times
- OEM specific
- Size specific • L/R compatible
- Narrow/wide compatible
- Enable rapid manufacturing transfer
- Cost effective

Zero Set-up

- Standard fixturing Facilitates scaling
 - Standard tooling
 - Enables Make-to-Surgical Plan Mfg

Dimensional Stabilization

- Reduced part movement
- Uninterrupted Process Flow

Faster Production

Automated **Transfer Systems**

- Autonomous operation
- Uninterrupted Process Flow

- 100% Inspection
- Accommodates varying lot sizes (as low as one)
- State-of-the-art eOMS w/ Siemens Teamcenter
- Advanced In-line Inspection Technologies

- inspection plans, risk files)
- of DMR (Programs Digital DMR

Thank You

Steve Rozow srozow@machmedicalcmo.com

Proven Ways to Reduce Manufacturing and Product Costs

Kris Carter Director of Supply Chain Total Joint Orthopedics (TJO)

The Cost Pressures Facing Orthopedic OEMs

- Global & Economic Headwinds
 - Increasing tariffs
 - Persistent economic uncertainty
- Shrinking Operational Margins
 - Rising labor & material costs
 - Lower reimbursement rates at hospitals and ASCs
- Operational Inefficiencies
 - High inventory carrying costs
 - Fragmented, multi-tiered supply chains

My Focus Areas

- Driving Cost Reduction
- Reducing Lead Times
- Increasing Order Flexibility
- World Class Product Quality
- Avoiding Stockouts

Two Opportunities to Drive Change

- Make the RFQ Process as a Strategic Lever for Cost Reduction
- Inventory Optimization

Make the RFQ Process a Strategic Lever for Cost Reduction

Use the RFQ as collaboration tool, not a price war

- Focus on total value (cost, quality, lead time, flexibility)
- Engage supplier in early-stage DFM and value engineering
- Invite alternatives on tolerancing, inspection & manufacturing methods
- Vet supplier for risk, capacity and scalability
- Be up front about expectations and constraints
- Build long-term relationships on shared goals

Smart Supplier Selection

- Right-sized the relationship: avoid suppliers too big or too small
- Prioritize flexibility with open POs, responsiveness to changing demand
- Strategic fit over lowest price
- Explore vertical integration and supplier consolidation where it makes sense
- Leverage economies of scale and new technology
- Prioritize continuous improvement

Mach Medical Design Transfer Case Study

TJO Primary CoCr Femur Transfer

- Conducted capability validation with Mach Medical's universal femur casting
- Building TJO-specific casting tools for all sizes in parallel
 - Mach sourced at a new to TJO supplier

Results:

- Forecasted savings of 20%+ PO spend cost savings
- Reduce primary femur carrying costs
- Reduced lead times enabling smarter purchasing decisions

Inventory Optimization

- Implement Vendor Managed Inventory / Kanban Agreements
- Continually monitor and adjust safety stock strategies
- Improve forecasting accuracy with smarter tools
- Classify and Segment Inventory (ABC) for focused management
- Rationalize Field Inventory and Consignment
- Align inventory strategy with product lifecycle
- Leverage data and analytics to make smarter decisions

Thank You

Kris Carter Kcarter@TJOinc.com

Thank You for Attending!

We value your feedback. Please fill out a session evaluation before you leave.

