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OUTLINE  |  AGENDA

⌂ A Little About Me - coffee and computational design

⌂ What is Computational Design - (hint… not AutoCAD)

⌂ Balancing Act of Bone - fragile ecosystem with high stakes

⌂ Reducing Stiffness - a general strike on hunks of metal

⌂ History of Additive Ortho - a sprint to the next-gen

⌂ Design Limitations - how printing got ahead of the curve

⌂ Computational Modeling - a new solution for unmet needs

⌂ Navigating the Design Landscape - so many options, so little time…

⌂ Case Study 1 - patient-specific geometry

⌂ Case Study 2 - simulation-informed structures

⌂ Wrap-up - Questions All rights reserved. Do not 
distribute without permission
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A LITTLE ABOUT ME
⌂4 kiddos (+1 on the way…)

○ Stasia, Mo, Arrow, Tobias
○ (why do we do this to ourselves…)

⌂m usica l fa m ily
○ Over 50 years combined piano experience

⌂coffe e  ob se ssion
○ green bean > perfect espresso
○ 9 coffee brewing methods

⌂e xp e rt  in b iom im icry fo r hum a n-use  
p rod ucts
○ orthopedic implants
○ filtration systems
○ heat transfer systems
○ consumer goods (earbuds, padding, wearables)

F O U N D E D   C O M P A N I E S
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WHAT IS COMPUTATIONAL DESIGN?

⌂ Computational Design ≠ Computer Aided Design (sorry AutoCAD…)

⌂ Computational Design ≠ Parametric Design

⌂ Computational Design == Algorithmic Design

⌂ Computational Design == Systems Design

h

d

Computational design is a field that involves the use

of computer algorithms, simulations, and data

analysis to support and enhance the design process

How about an illustration!
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WHAT IS COMPUTATIONAL DESIGN?

No zero-turn mower. 

Suburban dad fail
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WHAT IS COMPUTATIONAL DESIGN?
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WHAT IS COMPUTATIONAL DESIGN?

Let’s take this to 3D!
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WHAT IS COMPUTATIONAL DESIGN?

cubesphere

I’m ambiguous 
and conflicting!
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BALANCING ACT OF BONE
⌂ Julius Wolff (19th Century)

○ Wolff's Law states that bones will adapt to the degree of mechanical loading, such that an increase in

loading will cause the architecture of the internal, spongy bone to strengthen, followed by the strengthening

of the cortical layer. Furthermore, a decrease in stress on the bone will cause these bone layers to weaken.

⌂ Harold Frost (1960s)

○ There exists a mechanism that monitors bone metabolism (longitudinal growth, bone modeling, and

remodeling activities) in relation to mechanical usage, the "mechanostat." [4]

○ Modeling adapts bone to overloads, by enhancing additions of new bone and by changing bone architecture,

and remodeling adapts bone to underloads by removing bone next to marrow and conserving normally used

bone [4]

⌂ Recent Literature has affirmed the mechanostat theory and the importance of targeted microstrain for

bone remodeling
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BALANCING ACT OF BONE
⌂ When metals are used, the higher stiffness of the

implant results in bone loss as a result of

decreased physiologic loading of the bone [5]

⌂ Changes in cyclic bone stresses of less than 1%

of the ultimate strength can cause measurable

differences in bone remodeling after a period of a

few months [6]

⌂ Low-stiffness stems alter this pattern, leading to

reduced proximal bone loss, increased proximal

medullary bone hypertrophy, and no distal cortical

hypertrophy, suggesting that stem stiffness has a

profound effect on stress shielding. [7]

INTACT OPERATED
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REDUCING STIFFNESS
⌂ The early 2000s saw the rise of PEEK (polyether ether ketone), a bioplastic with a much closer

modulus to that of bone

⌂ Stiffness reduction in Ti implants was

limited by traditional CAD and machining

techniques

⌂ Although PEEK was biocompatible, it

lacked the osteogenic capabilities of

titanium

⌂ This was rectified with a titanium plasma

spray, with mixed success
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HISTORY OF ADDITIVE ORTHOPEDICS
⌂ Early 1980s - Chuck Hull invents stereolithography [1]

⌂ Late 1980s - Joseph Beaman and Carl Decker invent SLS [3]

⌂ 1999 - Earliest description of the use of 3DP in spine surgery [1]

⌂ 2007 - Earliest Patient-Specific implants being manufactured via AM [2]

⌂ 2010 - One of the First FDA approvals for an AM Implant [2]

⌂ 2010 - 2015 - Era of Research / Medical Modeling / PS Guides

⌂ Insertion of Laminar Screws (2010)

⌂ Cervical Pedicle Screw Placement (2011)

⌂ Screw Jigs for Complex Deformities (2015)

⌂ 2015 - Stryker Tritanium / K2M Cascadia - PLIF Cage 510k

⌂ 2016 - Stryker Tritanium Acetabular Shells

⌂ 2017 - Paragon 28 Titan 3D Wedge

⌂ 2017 - Centinel STALIF FLX Interbody Lines (Cerv / ALIF / LLIF)

⌂ 2019 - Genesys Spine Sacroiliac Joint Fixation Screw

⌂ 2020 - Carlsmed aprevo Patient-Specific Deformity System

⌂ 2022 - Redpoint Medical Patient Specific Titanium Guides (Full Foot)

3DP Papers in Orthopedics from 1999 to 2015

3DP Topics in Orthopedics from 1999 to 2015



All rights reserved. Do not 
distribute without permission

All rights reserved. Do not 
distribute without permission

DESIGN LIMITATIONS - SOFTWARE

⌂ By 2014, AM Metal Technology output had outpaced what designers could easily create

⌂ Design Tools Remained Largely Parametric - Solidworks, PTC Creo, NX

⌂ Early Softwares [Grasshopper (2014), Within Medical (2014), nTopology Element (2016)]

○ Basic Latticing

○ Limited Toolsets

○ Hindered by Interoperability / Meshing

⌂ nTopology Platform [2018] was introduced with implicit modeling, a kernel based off of SDF (signed

distance fields), allowing for computational design to enter the “engineering” mainstream
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DESIGN LIMITATIONS - SOFTWARE
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DESIGN LIMITATIONS - SOFTWARE

State of Market pre-2020

New Innovations
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DESIGN LIMITATIONS - REGULATORY
⌂ Test Values [Preliminary Guidance for Safety and Performance Based Criteria / Bottom 25th percentile of mechanical

characteristics chosen]

○ ASTM F2077 - Test Methods for Intervertebral Body Fusion Devices

■ 2% Compressive Yield - 5000 N

■ Dynamic Compression - 2000 N @ 5 Million Cycles

○ ASTM F2267 - Measurements of Load-Induced Subsidence of Intervertebral Body Fusion Device under Axial Compression

■ System Stiffness - 1500 N/mm (Foam Stiffness 1525 N/mm)

■ Device Compressive Stiffness - 45000 N/mm

⌂ Regulatory Requirements
○ Equivalence - strength requirements predicated on some already existing devices

○ Guidance - FDA’s Technical Considerations for Additive Manufactured Medical Devices

○ Standards

■ ASTM F3001: Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low

Interstitial) with Powder Bed Fusion

■ ASTM F2924: Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed

Fusion

High stiffness devices are often  given a 
“pass” as long as they meet the structural 
requirements

devices that “were legally marketed prior to May 28, 1976
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DESIGN LIMITATIONS - REGULATORY

⌂ Design of functional structures requires a careful balancing of strength and flexibility

⌂ High stiffness is correlated with subsidence and failure of fusion

⌂ Insufficient strength may cause device breakage, expulsion, or too high of micro-movement

⌂ An appropriate implant stiffness range will reduce the implant’s “biological footprint” inside the body

Strength

St
iff

ne
ss

Strength

St
iff

ne
ss

NOT Ideal Ideal

maintain stiffness while 
strength increases

high risk of subsidence!

THE BEST IMPLANT 
IS ONE THAT IS 

“FORGOTTEN” BY 
THE BODY’S 
BIOLOGICAL 

SYSTEMS
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DESIGN LIMITATIONS - REGULATORY
OLD NEW

VS

21,786 N - 50th percentile 
compressive force of 510k submitted 

devices reviewed by FDA [8]

500 N - Clinically-Relevant Lumbar 
Intervertebral Load [9]

NO TWO ANATOMIES ARE THE SAME, SO WHY SHOULD IMPLANTS BE?
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COMPUTATIONAL MODELING

⌂ Solution:
○ Computational Modeling allows for the creation

of both ordered and random structures that

weren’t before possible.

○ Computational Modeling allows for further

manipulation of said structures with functional

grading (density, morphology, etc.)

○ Computational FEA allows for analysis of

complex structures in ways not previously

possible

○ Computational Modeling allows for the use of

large data sets from said analyses as a feedback

mechanism into the structure

From ideation
to initial analysis:

Less than 10 minutes
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COMPUTATIONAL MODELING

Standard Gyroid -
5 mm Periodicity

Graded 
Thickness

Graded 
Cell Size

Shape-Graded 
[Primitive Shapes]

Shape-Graded 
[Helically Remapped]

Shape-Graded 
[Periodic Surface]
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COMPUTATIONAL MODELING

Oriented 
Perforated 

Strands

Radially-Mapped 
Sheet-Strut 

Hybrid
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COMPUTATIONAL MODELING

Stochastic Lattice:
Vol. - 486 mm3

Displ. - 7.5 µm
Stiffness - 66 kN/mm
Avg. Stress - 8.06e+07
Peak Stress - 8.06e+07

Perforated TPMS:
Vol. - 478 mm3

Displ. - 9.3 µm
Stiffness - 54 kN/mm
Avg. Stress - 9.65e+07

Remapped Perf. TPMS
Vol. - 476 mm3

Displ. - 36.53 µm
Stiffness - 13.78 kN/mm
Avg. Stress - 1.66e+08

18% reduction
in stiffness

45% reduction
in stiffness

For Lattices with the 
same volume fractions, 
intentional structural 
design can almost 
halve the stiffness 
while maintaining the 
same loading

Step 1: Intentional 
Structure Design
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COMPUTATIONAL MODELING

Step 2: Structure 
Refinement

Remapped Perf. TPMS
Vol. - 476 mm3

Displ. - 36.53 µm
Stiffness - 13.78 kN/mm
Avg. Stress - 1.66e+08
Peak Stress - 1.72e+09

Functionally Graded
Vol. - 276 mm3

Displ. - 95.25 µm
Stiffness - 5.25 kN/mm
Avg. Stress - 3.30e+08
Peak Stress - 3.6e+09

61% additional 
reduction in stiffness

By functionally grading 
with the von Mises 
stress field, we can 
further thin low stress 
areas and bolster the 
high stress ones. This 
allows us to maintain 
the same load without 
yielding while also 
decreasing stiffness by 
more than half from 
our already architected 
structure!
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COMPUTATIONAL MODELING

Material Addition in 
High-Stress Areas

Material Reduction in 
Low-Stress Areas
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NAVIGATING THE DESIGN LANDSCAPE
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THEPERMUTATIONSAREMULTI-
PLICATIVEANDEXPANDRAPIDLY

NAVIGATING THE DESIGN LANDSCAPE
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NAVIGATING THE DESIGN LANDSCAPE
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NAVIGATING THE DESIGN LANDSCAPE
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NAVIGATING THE DESIGN LANDSCAPE



All rights reserved. Do not 
distribute without permission

CASE STUDY 1 - PATIENT SPECIFIC
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CASE STUDY 2 - ADAPTIVE STRESS STRUCTURE



Thanks for 
Listening!

Presentation given by: MatthewShomper 
Presentation given on:12June2024 
Contact:matt@notarobot-eng.com
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THANK YOU
Learn more about OMTEC 

at OMTECexpo.com
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